maxOS

反脆弱:从不确定性中获益

读书

TL;DR

黑天鹅事件的风险很大,并且不可预测,因此我们不应该去寻找预测黑天鹅事件的方式,而应该去适应有黑天鹅事件的环境,适应的方式就是利用反脆弱性来构筑越来越强韧的事物。


黑天鹅:如何应对不可预知的未来》主要介绍了为什么黑天鹅事件不能被预测,但在书中作者 Nassim Nicholas Taleb 并没有给出如何应对黑天鹅事件的答案。之后出版的《反脆弱 : 从不确定性中获益》中,Taleb 才真正给出了答案,他认为应对黑天鹅事件最佳的方案就是提升反脆弱性。所以这篇文章我从自己的角度来解释下什么是反脆弱性,以及反脆弱性的作用机制。

Taleb 把事物分成三类:

  • 脆弱类:脆弱的事物喜欢安宁的环境,无法应对环境的变化,对黑天鹅事件几乎没有抵抗力;
  • 强韧类:强韧的事物并不太在意环境,它有足够大的防御力,黑天鹅事件可能会对它造成影响,但是影响不大;
  • 反脆弱类:反脆弱的事物则从混乱中成长,反脆弱的事物不但不会被黑天鹅摧毁,反而会从中受益。

虽然 Taleb 没有解释,但我认为这三种类型的事物是一个层层递进的关系。用一个 RPG 游戏中的角色来举例,脆弱的角色血量只有 1,只要受到的伤害大于 1,它就会直接死亡;强韧的角色血量有 100,如果受到的伤害小于 100,他只会受伤,但并不致命,如果受到大于 100 的伤害,强韧的角色也会死亡;反脆弱的角色则首先有一定的强韧性,血量也有 100,与强韧的角色一样,他可以承受 100 以下的伤害,虽然也会受伤,但是每次战斗结束后,反脆弱的角色的等级会提升,血量也会 +10。意味着只要杀不死他,那么每次战斗都会提升它的经验,让它变得更强。简单理解反脆弱就是「不断的打怪升级,然后挑战更高等级的怪」,如此循环下去。

反脆弱就是进步

我们在此不妨作一个大胆的猜想,任何有生命的物体在一定程度上都具有反脆弱性。

生命,或者我们说的大自然无疑是反脆弱的最佳例证。地球 45 亿的历史中,生命也存在了 38 亿年,这期间主要经历了 5 次物种大灭绝,大灭绝主要是由于外部环境的变化而导致。不过大灭绝不仅没有导致生命的终结,反而令生命更加的多样。从更长的视角来看,物种灭绝实际上淘汰了那些无法适应环境的生物,留下了能够应付更复杂环境的生物,准确来说是「基因」,更强韧的基因得以保留,基因不断突变、遗传,每一代新的物种都强于之前的物种,使得生命作为了更大的群体的强韧性得以提升。但对于个体来说,进化的代价也是非常巨大。对于群体来说,只要代价可以被承受,结果总是美好的。

反脆弱不是一种结果/状态,而是一个持续学习的过程,不断提升的强韧性是反脆弱的结果。如果我们把生物进化当做是学习的过程,那么进化使得基因「学到了」什么行得通、什么行不通,当基因「发现」眼睛有助于生存的时候,没有眼睛的生物就逐渐被淘汰,有眼睛的生物越来越多样。人类学习知识依赖于我们过去的经验,我们所经历的越多,经验就越多,也就知道了什么行得通、什么行不通。

这种依赖于过往经验的学习方式不可避免的会遇到「休谟问题」,但似乎也没有更好的方式。科学也没有一成不变的理论,曾经人们以为牛顿理论就可以解释这个世界的一切,爱因斯坦提出了相对论,接着人们又认为物理学已经不会再所有建树的时候,量子力学有出现了。即使是科学,也是在不断的犯错,不断的修正。因此也就不难理解张小龙说的那句「我所说的都是错的」。

反脆弱的前提是冗余

经验的积累需要大量的实验,而实验的问题是大部份的实验都是「失败」的,而失败是需要付出成本的。对于大自然来说,这种成本就是物种灭绝,如果自然一开始只有一个物种,那么一次灭绝就是毁灭性的,更不用说从中学习什么经验。但是如果大自然拥有大量的物种(实际上也是如此),那么几个物种的灭绝听起来很残酷,但对于大自然作为一个整体实际上是有帮助的。大量的物种,实际上就是一种冗余。

反脆弱性……其实只是某种形式的冗余。

在我看来,冗余并不能直接带来反脆弱性,但是冗余为反脆弱提供了前提——强韧性。备份是一种常见的冗余方式,生活中我们常见的是数据备份。我个人的数据至少会有 3 份拷贝,笔记本中有一份完整的拷贝,台式机中有一份完整的拷贝,服务器也有 2 份完整的拷贝。设备之间通过服务器来进行同步,服务器也会自己备份一次。备份的好处显而易见,在没有备份的时候,我的数据是脆弱的,任何意外所导致的设备或者硬盘损坏,数据就彻底丢失了。而备份的存在扩大了数据的强韧性,如果某一台设备损坏或故障,其他设备中依然有数据。虽然设备损坏本身确实也造成了伤害,但对最核心的数据却影响不大。

而在软件架构中,相对于部署在一台机器上的系统,分布式(去中心化)的系统也同样具有强韧性,也就是软件工程中常说的 robust。分布式的系统有会多个节点部署在不同的地区,即便某些节点遭遇了问题可能会宕机,或者当地的网络出现了问题导致服务无法访问,这都不会影响其他地方的正常访问。

冗余和分布式系统将原本由一个单一个体组成的系统,变成了由多个个体组成的群体。群体意味着即使当中的部分个体遭遇崩溃,也不会导致集体的崩溃。从个体到集体的转变,实际上增加了整个体统的强韧性。

个体的脆弱性与群体的强韧性

进化最有趣的一面是,它是依赖反脆弱性实现的;它喜欢压力、随机性、不确定性和混乱——而个体生物则相对脆弱,基因库正是利用冲击来确保优胜劣汰,提高整体的适应力。

首先需要澄清「个体」和「群体」的概念,「个体」是相对于「整体」而言的,并不是一个绝对的实体。例如一个人,相对于人体内的每个细胞而言,人是群体,细胞是个体;相对于家族、社会而言,人是个体,家族、社会是群体。个体的脆弱性也是相对于群体的强韧性而言,并不是说作为一个人,我们是脆弱的,而是相对于整个人类来说,一个人是脆弱的。也恰好是个体的脆弱性与冗余的存在,让群体显得强韧,也是群体反脆弱性的前提。

一个系统内部的某些部分可能必须是脆弱的,这样才能使整个系统具有反脆弱性。

这种观点很像传统集体主义的价值观,在集体遭遇风险的时候,集体会要求个体要顾全大局,牺牲自己来保全群体的利益。事实上两者是有差异的,自然进化本身并没有预设的目的,因此也就不会要求个体去做什么事情,它是一个通过自然选择、遗传变异等过程发生的现象。这些机制使得生物种类能够适应其环境,增强生存和繁衍的能力。自然的这种优胜劣汰与集体主义的不同之处在于,优胜劣汰并不是自然要求个体的牺牲,而是在环境变化中,个体为了适应环境自发的响应,这种响应体现了个体的自由意志,而非群体的要求。

由于大量的个体的存在,当灾难发生的时候,每个个体都可以根据实际情况来作出不同的反应,有些反应成功的抵御了灾难,有些则不。对于没有成功抵御灾难的个体而言,面临的可能是毁灭,但我们不能说他们是失败的,从那些被摧毁的个体角度来看确实如此,但是从群体的角度来看则不。每次失败对于群体来说都是宝贵的经验,正如 Thomas A. Edison 所说「I have not failed. I’ve just found 10,000 ways that won’t work.」这些经验被群体内的其他个体所了解、学习,使得群体内的其他个体的强韧性得以提升,从而使得整个群体的强韧性进一步提升,这便是群体能够反脆弱的原因。群体越大、个体越多,所产生的经验就会越多样,知识就会越多样,群体的进化才会更快。

这也就不难理解为什么大厂会引入末位淘汰机制,因为脆弱的个体被淘汰了,留下的都是强韧的个体,因此群体整体变得更强韧了。唯一不同的是,末位淘汰是自上而下的。如何评价「末位」也是个问题,大自然显然更加残酷,大自然淘汰的不是某个个体生物,而是一个物种,无法适应环境变化的物种会被直接淘汰,但这种淘汰不是大自然做出的选择,而是物种无法应对环境变化的结果。

杀不死我的,使我更强大。
杀得死我的,使其他人更强大。

自下而上的多样性

正是因为个体的自由意志,当风险来临的时候,个体能够根据自身的情况来作出反应,加上足够多的数量,我们才能看到更多样的结果。如果反脆弱是个体自由意志的体现,也意味着反脆弱必须是自下而上的。为什么「自上而下」行不通呢?其原因和《为什么伟大不能被计划》一样,因为进化本身是不确定的事情,没有人知道应该怎么做,即便是开明的「自上而下」。自上而下本质上是一种计划,而计划本身就是「反多样性的」,计划是基于我们已知的信息来做决定,包括已知的已知和已知的未知,而进化更多时候是关于未知的未知。任何事物一旦被设计、被计划或者被控制,它的结果就不可能是多样性,即使这种目标被定义成「提升系统的多样性」,也只是一个伪目标。并不是说「计划」没有意义,只是在「创新」上不行,当 OpenAI 发布了 ChatGPT 之后,很多公司都开始「计划」自己的 AI 能力,当目标已经很明确的时候,计划就是最高效的方式。

那些在公司里制定政策的人(如脆弱推手格林斯潘)由于有一个先进的数据采集部门的支持,因此得到了很多“及时”的信息,结果却往往反应过度,将噪声当作信号,格林斯潘甚至会关注克利夫兰真空吸尘器的销售状况的波动,“以便掌握经济的确切走向”,当然,他的微观管理将美国经济拖入混乱的泥潭。

多样性和新颖性实际上是相同的意思,任何对创新的探索、对整体反脆弱的提升,都建立在个体的自由探索之上,那么群体是否为个体提供了自由探索的环境才决定了群体能否获得真正的多样性和创新性。

反脆弱需要随机波动性

除了大量的个体、自由意志,反脆弱还需要风险,这个风险,自然就是环境所带来的。反脆弱需要风险,其实就是人们常说的「走出舒适圈」。

这个漫画本身并没有错,它确实反应了「走出舒适圈」可能发生的后果,但走出舒适圈并不代表「走进死亡圈」。我们需要风险,不代表要去拥抱所有的风险,而是选择那些「杀不死你的」风险。

你怎么创新?首先,尝试惹上麻烦。我的意思是严重的但并不致命的麻烦。

之所以需要风险,是因为风险(压力)会引起个体的「过度反应」,逐步累积的过度反应才是反脆弱的核心机制。健身增肌就是一个很好的例子,撸铁之所以能够增加肌肉,基本原理也是过度反应,被称之为「肌肉超量恢复」。当进行重量训练时,肌肉纤维(特别是肌肉的快速收缩纤维)会经历微小的撕裂或损伤,这种微损伤是超量恢复过程的触发因素。在力量训练后,肌肉细胞通过增加蛋白质合成来修复和增强肌肉纤维,以应对未来的压力。如果我们保持同样的运动强度,那么肌肉在适应这种强度之后也就不会再增加,如果我们增加运动强度,肌肉需要重新适应新的压力,继续生长。健身增肌最基本的原则就是「渐进式超负荷」,渐进式意味着要持续不断的训练;超负荷意味着每次的训练量要大于上一次,这样能够保持肌肉量不断的提升。

那么为什么个体会过度反应呢?一个可能的猜测是 Richard Dawkins 在《自私的基因》中所提到的「时滞性」,也就是延迟。这里的「延迟」指的是个体接收到压力的信息,然后作出反应来应对,以及应对方法的反馈,这几个步骤是存在延迟的。

基因是通过控制蛋白质的合成来发挥作用的,这本来是操纵世界的一种强有力的手段,但必须假以时日才能见到成效。 关于行为的最重要的一点是行为的快速性,用以测定行为的时间单位不是几个月而是几秒或几分之一秒。 基因并没有这样快的反应时间。基因只能竭尽所能事先部署一切。

在这种情况下,事先准备超量的肌肉和刚好够用的肌肉相比,前者在遇到危险情况的时候能够增加存活率,基因也倾向于「过度反应」。延迟造成的过度反应在现实社会中也非常常见,金融市场也是如此,当某个公司因为季度财报不达预期的时候,市场可能会发生大量的抛售该公司股票的行为,股价随即下跌,并且跌破能够反应公司真是价值的区间,但随后又会慢慢恢复能够反应公司真实价值的范围内。

压力在这里未必是一个很好的表述,没有人喜欢压力,更准确地说,「过度反应」是个体对外界刺激的反应,这个刺激源自环境的变化。我们都喜欢岁月静好,但现实却总是在随机波动,而反脆弱也需要这种波动。

当你脆弱的时候,你往往倾向于墨守成规,尽量减少变化——因为变化往往弊大于利。这就是为什么脆弱的事物需要明确的预测方法,反过来说,预测体系带来的只能是脆弱性。

反脆弱的风险

前面提到反脆弱是一个过程,更准确来说是一个不断重复且波动的过程,如果我们用冗余来代表强韧性,那么随着时间的增加,冗余的总量是在增加,但是短期内因为压力导致个体的牺牲,冗余会降低。

从数学上来这个图形近似一个正弦函数,经济学中的康德拉季耶夫长波(即资本主义经济展示出约50到60年的长周期波动)也与之类似。当压力来临的时候,导致个体的「牺牲」,此时整体的冗余会降低;个体的过度反应会创造更多的冗余来应对未来的压力,此时整体的冗余上升;新的压力又会导致冗余的降低;个体继续过度反应创造更多的冗余。如此往复。

这里存在两个成本:

  1. 压力导致个体牺牲的成本
  2. 个体过度反应所需要的时间成本

这些成本同样也是风险,首先,前面也说过,过大的压力可能导致所有的个体牺牲,也就不会存在后续的增长;其次,个体的过度反应的时间如果太长,无法赶在下一次压力来临之前准备好,那么同样可能会导致冗余持续减少,并最终归零。

第一个问题,如果有得选,尽可能的避开过大的风险,选择能够承受的风险。第二个问题,则是学习的速度,相对于下一次风险降临的时间而言,只要个体「过度反应」的速度更快,那么就可以避免冗余归零。但现实中我们无法预测风险何时降临,于是只能说「越快越好」。

我们再回头看前面的整个过程,其实可以分成三个阶段:

  1. 压力产生;
  2. 个体因无法预测未来的压力,因此选择过度反应产生更多冗余;
  3. 新的压力产生,个体根据压力反馈的调整策略,此时可能有几种情况:
    1. 冗余完全可以应付新的压力,那么个体不会过度反应,并且预计未来的压力也是如此,也不创造新的冗余;
    2. 冗余完全刚好可以应付新的压力,个体预计未来的压力可能也是如此,于是只会补充失去的冗余;
    3. 冗余无法应付新的压力,个体继续过度反应创造更多的冗余,并且假设下一次的压力会更大。

我们可以把这个过程抽象成:1. 个体根据压力假设未来可能发生的压力;2. 根据对未来的假设来作出反应; 3. 当新的压力产生时,根据新的压力调整策略。这个过程基本上就是「问题的认知与表述、实验数据的收集、假说的构成与测试。」也就是说常说的「科学方法」。

前面我们一直把一个个体的「牺牲」当作是某种实验,就如同科学实验一样,不幸的是实验的成功率总是很低。也就意味着大量的实验,需要大量的时间来验证。「科学方法」实际上就是一种学习的过程,经常有人问我有什么捷径可以快速学习某种技能,入门确实有不少捷径可走,但是要精通,除了不断的练习和失败之外,似乎没有别无他法,所以时间成本实际上才是最大的成本。

鼓励失败的文化

美国的资产很简单,就是在冒险和运用可选择性方面,这是一种卓越的能力,即参与到合理的试错活动中,失败了也不觉得耻辱,而是重新来过,再次失败,再次重来。而现代日本则恰好相反,失败给人带来耻辱,导致人们想方设法地隐藏风险,不管是金融风险还是核电风险;创造很小的收益,却要坐在火药桶上,这种态度与他们尊敬失败英雄的传统,以及虽败犹荣的观念,形成了奇怪的对比。

当我们把反脆弱这个议题放在人类社会的时候,就不得不受到文化的影响。多样性需要大量的实验,而实验就不可避免的存在大量的「失败」,文化对待失败的方式会影响个体的风险承担能力、创新的意愿。传统的东方文化强调群体和谐与社会稳定,个人的行为被期望符合社会和家庭的期待。在这些文化中,失败有时被视为给家庭或个人名誉带来负面影响的事件。西方文化通常被认为更加强调个人主义和个人成就,失败往往被看作是学习和成长的机会。在商业环境中,特别是在像硅谷这样的创新热点,失败甚至被视为一种荣誉,因为它被视为尝试和创新的标志。

我时常也会经常恐惧失败,担心自己把事情搞砸。

这种恐惧源于对未知的忌惮,以及社会对失败的普遍负面的看法。而恐惧本身又反过来增加了决策中的不确定,从而形成一种恶性循环。

而事实是「失败不等于个人能力的体现」,反过来,我们也不应该将「成功」当作是一件事情的目标,取而代之的应该是「学习」。

这样一来原本的「失败」也变成了一种进步,我们的目的不再是为了成功,而为了学习,而学习最终会指引我们成功。

另一方面,我们也应该对那些经历过失败的人给予最大的敬意,正是因为他们的失败,我们无须再去冒相同的风险,我们从他们的失败中收获了教训。Tabel 提议美国应该有一个创业者日,纪念那些创业失败的人,是他们失败的经验,构成了美国商业的成功。


让我简单概括下上面的观点:黑天鹅事件风险大且不可预测,因此我们不应该去寻找预测黑天鹅事件的方式,而应该去适应有黑天鹅事件的世界。适应的方式就是利用反脆弱性来构筑越来越强韧的事物。事物的强韧实际上就是冗余的多少,冗余越多,事物越强韧,越能够应付更大的风险。反脆弱性通过个体的过度反应来创造冗余,因为时滞性的问题,当风险发生时,个体倾向于创造更多的冗余来应付未来的风险。我们可以利用这种机制来主动的去寻找合适的风险,来提升自身的强韧性。

个体是脆弱的,群体是强韧的,而个体与群体是相对的概念。作为一个人,我们即是个体又是整体。作为个体,我们是脆弱的,应该尽可能避免无法承受的风险,同时加入一个群体,学习其他个体的经验来提升自己的强韧性。作为一个整体,我们可以利用这种机制来强身健体,同样,我们脑海中的知识(文化)也是个体,也可以利用相同的机制来获得提升。

如果你只想记住一句话,请记住「渐进式超负荷」。